Why Deep Foundation Testing is a Lifeline for Your Structure?

Have you ever wondered as to why Roman constructions are so captivating? While the structures built a few decades ago fade and faint, how is it that buildings constructed centuries ago still stand tall and attract the tourists? If these questions engage you, then Deep Foundation Testing concept is something you ought to know.  The tenacity of structures built by Romans was predominantly because of the timber piles they used as foundations, which helped them construct strong structures within a short time especially while laying bridges during war times. This is a classic example of deep foundation but how did they test the soil –if it’s ideal for laying piles—is a question that remains unexplored though.

Before we understand the deep foundation, it is pertinent to know what shallow foundation is all about. Due to time, lack of expertise and budget constraints, a large number of contracts switch to the shallow foundation for the completion of the building. In a shallow foundation, the foundation (the base of the structure) will not penetrate the subsurface layer, which means that it’s just a slab foundation for one-storey building usually.

On the contrary, Deep Foundation penetrates the subsurface layers of the earth to give extra support for the buildings and other structures to ensure that they are strong enough to withstand the natural calamities. To be precise, a deep foundation is the transfer of structures’ complete load on to pillars that touch the deepest layers possible for extra durability.

If you are planning to have a two-storey building or skyscrapers, your engineer would surely suggest a deep foundation. However, before going with Deep Foundation, it is crucial to test the soil in the proposed construction site to ensure that deep foundation is carried out seamlessly. These tests—to ascertain whether Deep Foundation can be carried or not in the specific area—form the part and parcel of Deep Foundation Testing.

Types of Deep Foundation Testing:

These are some of the standard deep foundation tests that are carried out by any construction enterprise or an engineer if you have opted for Deep Foundation Testing.

RIM-Cell Proof Test

Top Down & Lateral Test

Split Lateral Modulus Test

SoniCalipar

Integrity Test

Thermal Integrity Profiling

Osterberg Cell (O-Cell) Static Load Test

AFT Cell (proprietary service) Test

Let us delve into each one of them.

O-Cell Bi-Directional Static Load Test:

This is the most sought after full-scale load testing as it is noiseless with near zero vibrations making it ideal in busy areas where other kinds of testing might require special permissions. The Osterberg Cell load test would help analyze the overall information about the drilled shafts/ barrettes. According to a survey conducted by the United States Federal Highway Administration (USHFA), at least 65% of engineers in the USA considered O-Cell as the preferable load testing in 1994 while it touched 90% by 2018. During its initial stages, O Cell method was tested on US 231 Highway Bridge Over the Ohio River in Kentucky.  The bearing capacity of the bridge was to be determined and the engineers noticed that the load capacity of this device reached 7mm upward and 34mm downward, thereby giving an accurate and comprehensive picture of the shaft. How are the movements measured in O-cell test? Well, in the United States, electronic gauges are connected to the electronic/ computerized data systems where the results would be reflected and recorded. In an O-Cell test, side shear and end bearing components are separated by default that determines if the construction techniques worked well. Notably, O-cells need to be installed in advanced before the construction begins and cannot be installed on the wooden piles.

RIM-Cell Proof Test:  

Touted to be one of the most sought-after technologies in civil engineering, RIM Cell Proof Test requires an engineer to ascertain the performance of the shaft through loading the required shafts at least 1.2 times to the actual design load. Based on the test results, engineers can reduce the impact of the detected source. Some of the advantages of RIM Cell test include reduction of uncertainty, improved reliability, cost-effective, low grout volume requirement, comprehensive verification of base, easy calculation of the load, to name a few.

Top Down and Lateral Test:

In the top-down test, the engineer would keep on exerting pressure on the pile to test as to how much weight the pile can load. In case the pile is destroyed, in the process, the load level would be calculated and a new pile would be installed. In Lateral Test, the pile would be tested by moving back and forth with extreme pressure to ensure that it can withstand the force from any direction. Often used in the deep excavation projects, the foundation structures used in this kind of test are for permanent use. This testing is used for tall structures with deep basements of two or three levels—essentially parking lots.

Split Lateral and Modulus Test:

Also referred to as full-scale modulus test, this test involves applying loads on to piles in a lateral direction wherein each cell is expanded into the rock or the soil.  Each cell would be tested by applying the same loads but with designated intervals. Since the analysis in Split Lateral Test Module is complex, this is not so often used unless the proposed structure demands it.

SoniCaliper:

SoniCaliper provides a comprehensive picture of the drilled shaft. After the pile is driven down, information or 3D profiling of the pile would be recorded for at least 10 to 12 inch through specially designed sensors that provide the temperature of the piles. In case, there’s an issue with any of the location of the concrete, it would be reflected in the SoniCaliper readings based on which the pile would be removed and the hole would be filled with concrete. SoniCaliper can be tested up to the depth of 300 inches.

Integrity Test:

Popularly known as Pile Integrity Test, the name speaks everything about this kind of testing. It is carried out to ascertain the quality of the pile, its integrity, and length of the existing piles of foundations if any. It is ideally carried out in the areas where the proposed construction is carried out in an area where other structures existed before. After the demolition of the previous structures, the length of the existing piles should be ascertained and pulled out before carrying out other deep foundation tests.

Thermal Integrity Profile:

First developed at the University of South Florida, it’s a permanent and non-destructive/ positive test method that is mandatorily used along with along deep foundation testing. During Thermal Integrity Profiling, engineers would record the heat that’s generated by the concrete and the time taken for effective cooling to ensure that the concrete has set in, and it’s ideal to carry out the construction. This test is often followed by Sonic testing and integrity testing. An engineer would understand the issue with the concrete when an average temperature of some depth significantly varies from the average temperature at the other depth. In case of a potential problem, reinforcing cage would be aligned properly.

Conclusion: Based on the above tests and your soil type, your engineer might adopt one or more of these tests to ensure that your structure or skyscraper are built to withstand natural calamities. Apart from them, AFT has developed its own proprietary testing called AFT testing by leveraging the trending technology coupled with the strong expertise of professional engineers working with profound experience in civil engineering.

 

Leave A Comment

Your email address will not be published. Required fields are marked *